Przejdź do głównej treści

Nawigacja okruszkowa Nawigacja okruszkowa

Widok zawartości stron Widok zawartości stron

Sukcesy pracowników IFT (2022)

Granty NCN dla badaczy z IFT

  • dr Marcin Zagórski – Zrozumienie biofizycznych czynników ograniczających precyzję powstawania wzoru w trakcie rozwoju tkanki
  • dr Mario Rainer Flory – Holograficzne powiązania między polami kwantowymi, informacją a grawitacją
  • dr Chunshan Lin – Nowa fizyka w świetle pierwotnych reliktów z wczesnego Wszechświata
 

Titas Chanda, Maciej Lewenstein, Jakub Zakrzewski oraz Luca Tagliacozzo; publikacja w Physical Review Letters

The Higgs mechanism is an essential ingredient of the Standard Model of particle physics that explains the ‘mass generation’ of gauge bosons. In three spatial dimensions, a spontaneous breaking of symmetry triggers the Abelian-Higgs mechanism in the system while in one spatial dimension the phase diagram onsists of a single confined phase only. Due to this boring expectation of a single phase in the continuum field theory, the Abelian-Higgs model has never been explored in 1+1 dimensional discrete lattice before. We fill this gap.

Unlike the system in continuum, two distinct regions in the lattice version are identified, namely the confined and Higgs regions. These two regions are separated by a line of first order phase transitions that ends in a second order critical point. Above this critical point these two regions are smoothly connected by a crossover. The presence of a second order critical point allows one to construct an unorthodox continuum limit of the theory that is described by a conformal field theory. (CFT).

Phys. Rev. Lett. 128, 090601 (2022)

 

Suhail Ahmad Rather, Adam Burchardt, Wojciech Bruzda, Grzegorz Rajchel-Mieldzioć, Arul Lakshminarayan oraz Karol Życzkowski; publikacja w Physical Review Letters

In the paper we present analytical solution to the quantum analogue of the famous problem of 36 officers of Euler. Classically impossible puzzle turns out to be solvable in the quantum realm. The result gives a positive answer to several related questions concerning existence of a pair of quantum orthogonal Latin squares of size six, Absolutely Maximally Entangled state AME(4, 6) for four parties with six levels each, unitary matrix of size 36 with a very particular internal structure, and special classes of tensors with four indices each running from 1 to 6. Moreover, this can open new possibilities in the theory of Quantum Error Correcting Codes.

The attached picture contains four dice. If they were quantum, when rolled, the outcomes of any two would be strictly correlated with the outcomes for the other two. This roughly explains the idea behind the new AME state the existence of which has been questioned for years.

More information can be found on the JQIT website.

Phys. Rev. Lett. 128, 080507 (2022)

 

Michał Eckstein stypendystą MEiN

Dr Michał Eckstein związany z Jagiellonian Quantum Information Team otrzymał stypendium MEiN dla wybitnych młodych naukowców.

 

Hossein Taheri, Andrey B. Matsko, Lute Maleki oraz Krzysztof Sacha; publikacja w Nature Communications

In the publication in Nature Communications, an optical platform is described in which dissipative discrete time crystalline behavior is demonstrated in the laboratory.

The experiments constitute a milestone towards chip-scale discrete time crystals, paving the way from complex labs toward real-world applications. The heart of these experiments is a tiny optical cavity (solid disc-shaped resonator of ≈1 mm diameter) pumped by two diode lasers without any need for highly complex and expensive laboratory equipment.

Discrete time crystals realized experimentally so far have been "small" crystals in the time dimension (i.e., evolving with a period twice or three times as long as the period of the external drive). In the work published in Nature Communications it is demonstrated that “big” dissipative discrete time crystals are attainable in the laboratory. Big discrete time crystals open new horizons for condensed matter research in the time domain. In the published paper, the formation of defects in discrete time crystals are described. That is, the formation of the temporal counterpart of solid-state crystals with point defects like vacancies and interstitials.

Wywiad z autorami w Physics World.

Nat. Commun. 13, 848 (2022)